In the commercial drone market, demands have been growing. Commercial drones with thermal imaging capabilities are playing a prominent role in inspecting electrical power lines, oil pipelines, forest fire detection, and other infrastructures. Such capabilities are also used to assist in firefighting operations, locating and assessing fires, even when visibility is poor.
As UAV technology is applied in an increasing variety of sophisticated tasks, we see a growing need to maximize imaging performance. Specific optical needs are presented by the aforementioned increase in detector resolution and size, with its accompanying decrease in pixel size.
The production of smaller drones for commercial use also increases the challenges faced by optical manufacturers.
SOLUTION High quality lenses are essential to leverage the advances in detector performance. An inferior lens will produce an inferior image, even with the best detector. In order to match high performance, small pixel detectors, lower F#s, and tighter tolerances are required, forming lenses with minimal aberrations. To answer these requirements, lenses must also have a long focal length, to capture images from large distances. Our solution is based on advanced folded-optics and lightweight zoom lenses, optimized for the next generation infrared thermal imaging systems.
Ophir utilizes various state-of-the-art technologies to meet UAV and drone optical requirements. These technological solutions include innovative optical and mechanical designs, exotic materials, and unique lens manufacturing and coatings technologies.
Continuous zoom lenses address the low-SWaP challenge while keeping high optical performance. These lenses are smaller and lighter than using multiple 1-FOV lenses. In addition, a continuous zoom lens enables better mission flexibility by allowing changes in magnification during a UAV operation.
Working in collaboration with defense and commercial customers, Ophir has developed a range of thermal imaging zoom lenses that are both lightweight and high-performance, designed specifically for use in UAV payloads, drones, and hand-held devices. The advanced zoom lenses use a sophisticated optomechanical design, to ensure that the lenses are the smallest, lightest, and most compact, while still achieving the highest levels of IR thermal imaging performance.
For example, Figure 2(a) shows the LightIR 20-275mm f/5.5 lightweight zoom lens, and its opto-mechanical laylayout. The innovative opto-mechanical design resulted in a weight of only 264 grams. Despite the challenging SWaP restrictions, the advanced lightweight design resulted in high level of MTF values across the entire field, as shown in Figure 3(b). Moreover, the selection of advanced materials enabled unique athermalization properties, maintaining the highest performance over a wide operating temperatures, in the range of -35°C to +65°C.
The characteristics of this lens lead to long operational ranges relative to the lens size and weight. For example, the detection range of a 2.3m vehicle would be around 15km(!) when integrated with a 23mK NETD, 15μm pixel detector (based on FLIR92 model calculations). To the best of our knowledge, this is the smallest and lightest continuous zoom lens on the market today, enabling the high-performance capabilities of advanced IR thermal imaging systems in harsh environmental conditions and on constrained platforms.