The results from surveying the exposure duration of a wide range of lightshow effects in differing venue sizes indicates that the time a beam takes to traverse a 7mm aperture ranges from several milliseconds for slow bright looking finger beam type effects, to tens of microseconds for the fastest moving effects. A large number of effects typically create effective pulse widths of several hundred microseconds.
The BC20 is able to overcome the deficiencies in using a standard power meter detector. The peak hold detector of the BC20 is able to register pulses as short as 10us, thus making the device suitable for directly measuring the peak power present in the majority of scanned laser show emissions. Once the peak power present in the emission at the point of accessible contact has been determined, and following a straightforward power-to-irradiance conversion, the assessor is able to evaluate the exposure against the applicable irradiance based exposure limit. With only a single pulse needed to register a reading, the BC20 can be used to immediately determine the peak power present in an operational laser effect. This is something that has been impossible to achieve using a standard power meter.
The BC20 also helps with measuring static laser beams in what can easily be considered as a challenging measurement environment. A common difficulty experienced when a laser system is installed in an entertainment setting is that the distance the beam propagates until it reaches the audience may often be several tens of meters. Over such distances, any instability in the beam, such as slight beam movement caused through vibration of the structure, the laser projector, or any of its external optical components are secured to, are amplified and cause difficulties for a standard silicon detector.
A rapidly vibrating beam due to high sound pressure levels present in the venue results in a beam profile that cannot be effectively measured. In these circumstances, the peak-hold detector of the BC20 makes it much easier to identify moving hotspots that are often present in such beam profiles. Furthermore, the BC20 overcomes another common problem evident in the output of most common laser effects control systems, which is that even when they are commanded to output a single beam, the output is not true CW. Instead, the beam has a strange duty cycle, due to control software constraints, which again leads to sources of measurement error in traditional silicon detectors. In these circumstances, the BC20 effectively ignores the off time of the laser, and is able to still present a peak power reading to the user.
The BC20 was originally designed in mind for measuring the red laser emission of barcode scanning products, and like the Ophir PD300 sensor, the detector has Ophir’s patented automatic background subtraction system incorporated in the front face of the sensor. This feature is intended to remove background light from the measured emission, a useful aid for measuring small diameter beams that are fairly close to the source. However, for light show applications, the beams to be measured are much larger, perhaps a 100 mm or more in diameter to possess an irradiance less than the exposure limit value. For this type of beam measurement it is better to disable the background subtraction feature during installation.
Ophir’s PD300-CDRH adapter over the BC20, which has the effect of covering up the secondary background detector, introduces a 7 mm aperture over the front of the primary detector. The installation of the PD300-CDRH adapter prevents the large diameter beams from interfering with the automatic background light subtraction system. But this means a manual background light subtraction should be carried out prior to measurement by pressing the zeroing key on the meter and staying aware of other illumination sources.
The appropriate Maximum Permissible Exposure (also known as exposure limit) value should be determined by the type of emission that the lighting effect is likely to expose people to. In practice, this may consist of one or more short doses of laser light causing direct exposure. If an assumption is made that the total duration for all the doses in a performance could be 10s or greater, then the small source ocular limit of 10W.m-2 (1mW.cm-2) may be appropriate. This limit, when considered as a power reading through the 7mm aperture of the PD300-CDRH adapter, equates to 400uW. Similarly, if the total exposure duration of all doses could be determined to be less than 0.25s, then the small source ocular limit of 25.4 W.m-2 (2.5mW.cm-2) would be appropriate — the equivalent of a 1mW power reading through the 7mm aperture.
For a light show operator, the values being suggested may seem to be restrictive. However, one has to remember that the reading on the meter is only that accessible through the PD300-CDRH aperture, while the entire expanded beam will have more power present, and hence look much brighter than a 1mW tight beam.
As is common with most silicon photodiode based detectors, the response to different wavelengths of laser radiation varies across the visible spectrum as a result of the related conversion efficiency of photodiode technology. This requires the meter to either be set to measure the correct wavelength, and, for those wavelengths that the meter does not have a pre-programmed builtin calibration factor, the meter reading must be adjusted manually to determine the true exposure level. Figure 2 shows the relative sensitivity of the BC20, while Table 1 lists a range of correction factors to be used for wavelengths across the visible spectrum.